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The function f is defined for all real values of x by

f(x) = 10 — (x + 3)°.

(i) State the range of f. [1]
(ii) Find the value of ff(—1). [3]
Find the exact solutions of the equation [6x — 1| = |x - 1|. (4]

The mass, m grams, of a substance at time ¢ years is given by the formula

m= 1806—0.017t

(i) Find the value of ¢ for which the mass is 25 grams. [3]
(ii) Find the rate at which the mass is decreasing when ¢ = 55. [3]
(a)
y

(0]

The diagram shows the curve y = i The region R, shaded in the diagram, is bounded by the
x

V.
curve and by the lines x = 1, x = 5 and y = 0. The region R is rotated completely about the x-axis.
Find the exact volume of the solid formed. [4]
(b) Use Simpson’s rule, with 4 strips, to find an approximate value for
5
_[ V(& + 1) dx,
1
giving your answer correct to 3 decimal places. 4]
(i) Express 3sin 6 + 2cos 0 in the form Rsin(6 + a), where R > 0 and 0° < a < 90°. [3]

(ii) Hence solve the equation 3sin0 +2cos 0 = %, giving all solutions for which 0° < 8 < 360°. [5]
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(a) Find the exact value of the x-coordinate of the stationary point of the curve y = xInx. 4]
. . 4x+c . . ..
(b) The equation of acurveis y = P where c is a non-zero constant. Show by differentiation
-c
that this curve has no stationary points. [3]
(i) Write down the formula for cos 2x in terms of cos x. [1]
4 2
(i) Prove the identity ———"% = 4 — 2sec?x. (3]
1+ cos2x
4cos2x
1 0 2r, th tion —————— = 3t -17.
(iii) Solve, for 0 < x < 27, the equation T3 cosx an.x [5]

y=v(3x+38)
—» X
o

iy
The diagram shows part of each of the curves y = €5 and y = /(3x + 8). The curves meet, as shown
in the diagram, at the point P. The region R, shaded in the diagram, is bounded by the two curves and
by the y-axis.
(i) Show by calculation that the x-coordinate of P lies between 5.2 and 5.3. [3]

(ii) Show that the x-coordinate of P satisfies the equation x = % In(3x + 8). [2]

(iii) Use an iterative formula, based on the equation in part (ii), to find the x-coordinate of P correct
to 2 decimal places. [3]

(iv) Use integration, and your answer to part (iii), to find an approximate value of the area of the
region R. (5]

[{Question 9 is printed overleaf.]
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The function f is defined by f(x) = v/(mx + 7) — 4, where x > —— and m is a positive constant. The
m

diagram shows the curve y = f(x).

(i) A sequence of transformations maps the curve y = v/x to the curve y = f(x). Give details of these
transformations. [4]

(ii) Explain how you can tell that f is a one-one function and find an expression for £71(x). [4]

(iif) It is given that the curves y = f(x) and y = f ~1(x) do not meet. Explain how it can be deduced
that neither curve meets the line y = x, and hence determine the set of possible values of m. [5]
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1 (i) | State f(x) <10 B1 | 1 [Any equiv but must be or
imply <]
(ii) | Attempt correct process for composition of M1 | [whether algebraic or
functions numerical]
Obtain 6 or correct expression for ff(x) A1
Obtain — 71 Al 3
2 Either Obtain x =10 B1 | [ignoring errors in working]
Form linear equation with signs of 6x and x M1 | [ignoring other sign errors]
different
State 6x—-1=-x+1 A1 | [or correct equiv with or
without brackets]
Obtain 2 and no other non-zero value A1 | 4 Jor exact equiv]
Or | Obtain 36x% ~12x+1=x? —2x +1 B1 | [or equiv]
Attempt to solve quadratic equation M1 | [as far as factorisation or subn
into formula]
Obtain 2 and no other non-zero value A1 | [or exact equiv]
Obtain 0 B1 | (4) [ignoring errors in working]
3 (i) | Attempt solution involving (natural) M1
logarithm
Obtain -0.017/=1In 2> A1 | [or equiv]
Obtain 116 A1 | 3 for greater accuracy
rounding to 116]
(ii) | Differentiate to obtain ke %7 M1 | [any constant & different from
180; solution must involve
differentiation]
Obtain correct —3.06e 017 A1 | [or unsimplified equiv; accept
+ or —]
Obtain 1.2 A1 | 3 [or greater accuracy; accept
+ or — answer]
4 (a) | State or imply [z y? dx B1
Integrate to obtain & Inx M1 | [any constant , involving 7 or
not; or equiv such as & In 4x]
Obtain 4zlnx or 4Inx A1 | [or equiv]
Obtain 47In5 A1 | 4 [or similarly simplified
equiv]
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(b) | Attempt calculation involving attempts at y M1 | [with each of 1,4, 2 present at
values least once as coefficients]
Attempt Lxi(yg +4y +2y; +4y3 +y4) M1 | [with attempts at five y values]
Obtain L2 +4/5 +2410 + 4417 + 26) A1 | [or exact equiv or decimal
) equivs]
Obtain 12.758 A1 | 4 [or greater accuracy]
S (i) | ObtainR=+13, 0r 3.6 or 3.61 or greater B1
accuracy
Attempt recognisable process for finding o M1 | [allow sine/cosine muddles]
Obtain a=33.7 A1 | 3 for greater accuracy]
(ii) | Attempt to find at least one value of 8+ « *M1
Obtain value rounding to 76 or 104 A1V | [following their R]
Subtract their « from at least one value M1 | [dependent on *M]
Obtain one value rounding to 42 or 43, or to A1
70
Obtain other value 42.4 or 70.2 A1 | S [or greater accuracy;
no other answers between 0
and 360;
ignore answers outside 0 to
360]
6 (a) | Attempt use of product rule *M1
Obtain Inx + 1 A1 | [or unsimplified equiv]
Equate attempt at first derivative to zero and | M1 | [dependent on *M]
obtain value involving e
Obtain e A1 | 4 [or exact equiv]
(b) | Attempt use of quotient rule M1 | [or equiv using product rule or
]
. —c)4 - A1 or equiv
Obtain “X=cH 4(;1x +c) [or equiv]
(4x—c)
Show that first derivative cannot be zero A1 |3 [AG; derivative must be
correct]
7 (i) | State 2cos® x-1 B1 1
(ii) | Attempt to express left hand side in terms of | M1 [using expression of form
cos x acos’x+b]
maybe implied
Identify L as secx M1 | [maybe implied]
COSXx
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1
Obtain integral of form kes"

44

Confirm result A1 | 3 [AG; necessary detail
required]
(ii) | Use identity sec? x=1+tan? x B1
Attempt solution of quadratic equation in tan | M1 | [or equiv]
X
Obtain 2tan®x+3tanx-9=0 and hence tan | Al
x=-3, 3
Obtain at least two of 0.983, 4.12, 1.89, A1 | [allow answers with only 2 5.f;
5.03 allow greater accuracy; allow
(or of 0.3137; 1.31 7, 0.6027, 1.607) 0.983 + 7 1.89 + 7 allow
degrees: 56, 236, 108, 288]
Obtain all four solutions A1 | S [now with at least 3 s.1.;
must be radians;
no other solutions in the range
0-2m
ignore solutions outside range
0-27]
8 (i) | Attempt relevant calculations with 5.2 and M1
53
Obtain correct values Al |« » Y2 n-»
52 283 287  —0.04
5.3 289  2.88 0.006
Conclude appropriately A1 |3 [AG; comparing y values or
noting sign
change in difference in y values
or equiv]
(ii) | Equate expressions and attempt M1
rearrangement to x =
Obtain x=3in(3x +8) A1 | 2 [AG; necessary detail
: required]
(iii) | Obtain correct first iterate B1
Carry out correct process to find at least two | M1
iterates in all
Obtain 5.29 A1 |3 [must be exactly 2 decimal
places;
5.2-55.2687-5.2832—>5.2863—5.2869;
5.25-55.2793-55.2855-55.2868—5.2870;
5.3-55.2898-55.2877—5.28725.2871]
i . 4 M1
(iv) Obtain integral of form k(3x +8)3
M1
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4 1 A1 or equiv
Obtain 1(3x+8)7 —5¢5" lor equiv]
Apply limits 0 and their answer to (i) M1 | [applied to difference of two
integrals)
Obtain 3.78 A1 | 5 [or greater accuracy]
9 (i) | Indicate stretch and (at least one) translation | M1 | [... in general terms]
State translation by 7 units in negative x A1 | [or equiv; using correct
direction terminology]
State stretch in x direction with factor 1/m A1 | [must follow the translation by
7, or equiv; using correct
terminology]
Indicate translation by 4 units in negative y B1 |4 [orequiv; atany stage; the
direction two translations may be
combined]
(ii) | Refer to each y value being image of unique B1 | [or equiv]
x value
Attempt correct process for finding inverse M1
Obtain expression involving (x +4)* or M1
(r+4)°
2 _ A1 | 4 [orequiv]
Obtain &+ 7
m
(iii) | Refer to fact that curves are reflections of B1 | [or equiv]
each other in line y = x
Attempt arrangement of either f(x) = x or M1
) =x
Apply discriminant to resulting quadratic M1
equati on
Obtain (m—2)(m—14)<0 A1 | [orequiv]
Obtain 2 <m <14 A1 |5
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